关闭图标
log图标

toefl.viplgw.cn

  • 使用手机注册
  • 使用邮箱注册
  • 手机号不能为空!

    验证码不能为空!

    用户名不能为空!

    密码不能为空!

  • 邮箱不能为空!

    验证码不能为空!

    用户名不能为空!

    密码不能为空!

已有账号? 登录到雷哥托福
关闭图标
log图标
  • 使用手机找回密码
  • 使用邮箱找回密码
  • 手机号不能为空!

    验证码不能为空!

    密码不能为空!

  • 邮箱不能为空!

    验证码不能为空!

    密码不能为空!

又想起来了
加入生词本

listen

英['lɪs(ə)n] 美['lɪsn]
vi. 听,倾听;听从,听信
n. 听,倾听

已添加
×

我要举报草莓小菇凉评论

用户头像
草莓小菇凉:说的非常好,十分有道理,棒棒棒!

06-08 15:44:55

请选择举报类型:

举报电话:400 1816 180    举报QQ:2095453331
×
logo图标
分享到雷哥托福

分享成功图标分享成功

邀请名师点评成功,管理员正在安排老师进行点评。

继续做题 返回首页
支付雷豆失败图标 雷豆余额不足 购买雷豆 返回
报告题目错误
请选择错误类型:
请描述一下这个错误:

取消

文章结构

TPO 12-L1 .Cell Division 点击收藏

标准

  • 高音
  • 静音
  • 句子
    精听
  • 全文
    精听
  • 听写
    模式
  • 点击查看本句

    听写本句 再播一遍 下一句
  • 点击查看全文

    再播一遍本文

    Listen to part of a lecture in a Biology Class.

    As we learn more about the DNA in human cells and how it controls the growth and development of cells, then maybe we can explain a very important observation, that when we try to grow most human cells in laboratory, they seem programmed to divide only a certain number of times before they die.

    Now this differs with the type of cell.

    Some cells, like nerve cells, only divide seven to nine times in their total life.

    Others, like skin cells, will divide many, many more times.

    But finally the cells stop renewing themselves and they die.

    And in the cells of the human body itself, in the cells of every organ, of almost every type of tissue in the body, the same thing will happen eventually.

    OK, you know that all of persons' genetic information is contained on very long pieces of DNA called Chromosomes.

    46 of them are in the human cells, that's 23 pairs of these Chromosomes of various lengths and sizes.

    Now if you look at this rough drawing of one of them, one Chromosome is about to divide into two.

    You see that it sort of looks like, well actually it's much more complex than this but it reminds us a couple of springs linked together ,two coiled up pieces of DNA.

    And if you stretch them out you will find they contain certain genes, certain sequences of DNA that help to determine how the cells of the body will develop.

    When researchers look really carefully at the DNA in Chromosomes though, they were amazed.

    We all were, to find that only a fraction of it, maybe 20-30%, converts into meaningful genetic information.

    It's incredible - at least it was to me.

    But if you took away all the DNA that codes for genes, you still have maybe 70% of the DNA left over.

    That's the so-called JUNK DNA.

    Though the word junk is used sort of tongue-in-cheek.

    The assumption is that even if this DNA doesn't make up any of the genes, it must serve some other purpose.

    Anyway, if we examine the ends of these coils of DNA, we will find a sequence of DNA at each end of every human Chromosome, called a telomere.

    Now a telomere is a highly repetitious and genetically meaningless sequence of DNA, what we were calling JUNK DNA.

    But it does have an important purpose.

    It is sort of like the plastic tip on each end of shoelace.

    It may not help you tie your shoe but that little plastic tip keeps the rest of the shoelace, the shoe string from unraveling into weak and useless threads.

    Well, the telomeres at the ends of Chromosomes seem to do about the same thing - protect the genes the genetically functional parts of the Chromosome from being damaged.

    Every time the Chromosome divides, every time one cell divides into two, pieces of the ends of the Chromosome, the telomere, get broken off.

    So after each division, the telomere gets shorter and one of the things that may happen after a while is that pieces of the genes themselves get broken off the Chromosomes.

    So the Chromosome is now losing important genetically information and is no longer functional.

    But as long as the telomeres are a certain length they keep this from happening.

    So it seems that, when the, by looking at the length of the telomeres on specific Chromosomes we can actually predict pretty much how long certain cells can successfully go on dividing.

    Now there are some cells just seem to keep on dividing regardless, which may not always be a good thing if it gets out of control.

    But when we analyze the cells chemically we find something very interesting - a chemical in them, and an enzyme called telomerase.

    As bits of the telomere break off from the end of Chromosome, this chemical, this telomeres can rebuild it, can help reassemble the protective DNA, the telomere that the Chromosome is lost.

    Someday we may be able to take any cell and keep it alive functioning and reproducing itself essentially forever through the use of telomerase.

    And in the future we may have virtually immortal nerve cells and immortal skin cells of whatever because of these chemical - telomeres can keep the telomeres on the ends of Chromosomes from getting any shorter.

    • special
    ☞查看答案 再播一遍

联系雷哥托福

全国免费咨询热线:400 1816 180

预约托福考试规划师