log图标

toefl.viplgw.cn

  • 使用手机注册
  • 使用邮箱注册
  • 手机号不能为空!

    验证码不能为空!

    用户名不能为空!

    密码不能为空!

  • 邮箱不能为空!

    验证码不能为空!

    用户名不能为空!

    密码不能为空!

已有账号? 登录到雷哥托福
log图标
  • 使用手机找回密码
  • 使用邮箱找回密码
  • 手机号不能为空!

    验证码不能为空!

    密码不能为空!

  • 邮箱不能为空!

    验证码不能为空!

    密码不能为空!

加入生词本

listen

英['lɪs(ə)n] 美['lɪsn]
vi. 听,倾听;听从,听信
n. 听,倾听

已添加
×

我要举报草莓小菇凉评论

用户头像
草莓小菇凉:说的非常好,十分有道理,棒棒棒!

06-08 15:44:55

请选择举报类型:

举报电话:400 1816 180    举报QQ:2095453331
×
logo图标
分享到雷哥托福

分享成功图标分享成功

邀请名师点评成功,管理员正在安排老师进行点评。

继续做题 返回首页
支付雷豆失败图标 雷豆余额不足 购买雷豆 返回
报告题目错误
请选择错误类型:
请描述一下这个错误:

取消

下载雷哥托福APP

你的托福备考神器

雷哥托福

雷哥网托福APP

你的托福备考神器

去下载

题库>阅读-12512 -Official-27

请联系小助手查看完整题目

(微信号:lgwKY2001)

How do predators affect populations of the prey animals? The answer is not as simple as might be thought. Moose reached Isle Royale in Lake Superior by crossing over winter ice and multiplied freely there in isolation without predators. When wolves later reached the island, naturalists widely assumed that the wolves would play a key role in controlling the moose population. Careful studies have demonstrated, however, that this is not the case. The wolves eat mostly old or diseased animals that would not survive long anyway. In general, the moose population is controlled by food availability, disease and other factors rather than by wolves.

When experimental populations are set up under simple laboratory conditions, the predator often exterminates its prey and then becomes extinct itself, having nothing left to eat. However, if safe areas like those prey animals have in the wild are provided, the prey population drops to low level but not extinction. Low prey population levels then provide inadequate food for the predators, causing the predator population to decrease. When this occurs, the prey population can rebound. In this situation the predator and prey population may continue in this cyclical pattern for some time.

Population cycles are characteristic of small mammals, and they sometimes appear to be brought about by predators. Ecologists studying hare populations have found that the North American snow shoe hare follows a roughly ten-year cycle. Its numbers fall tenfold to thirty in a typical cycle, and a hundredfold change can occur. Two factors appear to be generating the cycle: food plants and predators.

The preferred foods of snowshoe hares are willow and birch twigs. As hare density increases, the quantity of these twigs decreases, forcing the hares to feed on low-quality high-fiber food. Lower birth rates, low juvenile survivorship, and low growth rates follow, so there is a corresponding decline in hare abundance. Once the hare population has declined, it takes two to three year for the quantity of twigs to recover.

A key predator of the snowshoe hare is the Canada lynx. The Canada lynx shows a ten-year cycle of abundance that parallels the abundance cycle of hares. As hare numbers fall, so do lynx numbers, as their food supply depleted.

What causes the predator-prey oscillations? Do increasing number of hares lead to overharvesting of plants, which in turn results in reduced hare populations, or do increasing numbers of lynx lead to overharvesting hares? Field experiments carried out by Charles Krebs and coworkers in 1992 provide an answer. Krebs investigated experimental plots in Canada’s Yukon territory that contained hare populations. When food was added to those plots (no food effect) and predators were excluded (no predator effect) from an experimental area, hare numbers increased tenfold and stayed there—the cycle was lost. However, the cycle was retained if either of the factors was allowed to operate alone: if predators were excluded but food was not added (food effect alone), or if food was added in the presence of predators (predator effect alone). Thus both factors can affect the cycle, which, in practice, seems to be generated by conjunction of the two factors.

Predators are an essential factor in maintaining communities that are rich and diverse in species. Without predators, the species that is the best competitor for food, shelter, nesting sites, and other environmental resources tends to dominate and exclude the species with which it competes. This phenomenon is known as “competitor exclusion”. However, if the community contains a predator of the strongest competitor species, then the population of that competitor is controlled. Thus even the less competitive species are able to survive. For example, sea stars prey on a variety of bivalve mollusks and prevent these bivalves from monopolizing habitats on the sea floor. This opens up space for many other organisms. When sea stars are removed, species diversity falls sharply. Therefore, from the stand point of diversity, it is usually a mistake to eliminate a major predator from a community.

According to paragraph 7, which of the following statements correctly characterizes the effect of sea stars on the ecosystem in which they are predators of bivalves?

  • Predators are an essential factor in maintaining communities that are rich and diverse in species. A Bivalve population are kept low, allowing species that compete with bivalves to survive. B The numbers of most species of bivalves are greatly reduced, leaving the bivalve species that is the strongest competitor to dominate among the survivors. C Biological diversity begins to decrease because many bivalve species disappear. D Sea stars dominate at first but then die off because of the depleted food supply.
正确答案: A

网友解析

当前版本由 十三个 更新于2018-11-22 20:04:54 感谢由 十三个 对此题目的解答所做出的贡献。

解析:sea stars对生态系统的作用是作为一个例子来例证的,具体内容为“However, if the community contains a predator of the strongest competitor species, then the population of that competitor is controlled. Thus even the less competitive species are able to survive”。Sea stars捕食bivalve,对bivalve的数量加以控制,这样其他生物就能在海底生存。

我有更好解析

取消

提交

题目讨论 (0条评论)

题库>阅读-12512 -Official-27

请联系小助手查看完整题目

(微信号:lgwKY2001)

How do predators affect populations of the prey animals? The answer is not as simple as might be thought. Moose reached Isle Royale in Lake Superior by crossing over winter ice and multiplied freely there in isolation without predators. When wolves later reached the island, naturalists widely assumed that the wolves would play a key role in controlling the moose population. Careful studies have demonstrated, however, that this is not the case. The wolves eat mostly old or diseased animals that would not survive long anyway. In general, the moose population is controlled by food availability, disease and other factors rather than by wolves.

When experimental populations are set up under simple laboratory conditions, the predator often exterminates its prey and then becomes extinct itself, having nothing left to eat. However, if safe areas like those prey animals have in the wild are provided, the prey population drops to low level but not extinction. Low prey population levels then provide inadequate food for the predators, causing the predator population to decrease. When this occurs, the prey population can rebound. In this situation the predator and prey population may continue in this cyclical pattern for some time.

Population cycles are characteristic of small mammals, and they sometimes appear to be brought about by predators. Ecologists studying hare populations have found that the North American snow shoe hare follows a roughly ten-year cycle. Its numbers fall tenfold to thirty in a typical cycle, and a hundredfold change can occur. Two factors appear to be generating the cycle: food plants and predators.

The preferred foods of snowshoe hares are willow and birch twigs. As hare density increases, the quantity of these twigs decreases, forcing the hares to feed on low-quality high-fiber food. Lower birth rates, low juvenile survivorship, and low growth rates follow, so there is a corresponding decline in hare abundance. Once the hare population has declined, it takes two to three year for the quantity of twigs to recover.

A key predator of the snowshoe hare is the Canada lynx. The Canada lynx shows a ten-year cycle of abundance that parallels the abundance cycle of hares. As hare numbers fall, so do lynx numbers, as their food supply depleted.

What causes the predator-prey oscillations? Do increasing number of hares lead to overharvesting of plants, which in turn results in reduced hare populations, or do increasing numbers of lynx lead to overharvesting hares? Field experiments carried out by Charles Krebs and coworkers in 1992 provide an answer. Krebs investigated experimental plots in Canada’s Yukon territory that contained hare populations. When food was added to those plots (no food effect) and predators were excluded (no predator effect) from an experimental area, hare numbers increased tenfold and stayed there—the cycle was lost. However, the cycle was retained if either of the factors was allowed to operate alone: if predators were excluded but food was not added (food effect alone), or if food was added in the presence of predators (predator effect alone). Thus both factors can affect the cycle, which, in practice, seems to be generated by conjunction of the two factors.

Predators are an essential factor in maintaining communities that are rich and diverse in species. Without predators, the species that is the best competitor for food, shelter, nesting sites, and other environmental resources tends to dominate and exclude the species with which it competes. This phenomenon is known as “competitor exclusion”. However, if the community contains a predator of the strongest competitor species, then the population of that competitor is controlled. Thus even the less competitive species are able to survive. For example, sea stars prey on a variety of bivalve mollusks and prevent these bivalves from monopolizing habitats on the sea floor. This opens up space for many other organisms. When sea stars are removed, species diversity falls sharply. Therefore, from the stand point of diversity, it is usually a mistake to eliminate a major predator from a community.

According to paragraph 7, which of the following statements correctly characterizes the effect of sea stars on the ecosystem in which they are predators of bivalves?

正确答案: A

网友解析

写解析

十三个 更新于2018-11-22 20:04:54

解析:sea stars对生态系统的作用是作为一个例子来例证的,具体内容为“However, if the community contains a predator of the strongest competitor species, then the population of that competitor is controlled. Thus even the less competitive species are able to survive”。Sea stars捕食bivalve,对bivalve的数量加以控制,这样其他生物就能在海底生存。

题目讨论 (0条评论)

小伙伴,有什么疑惑or做题思路,写这里!
立即评论

热门活动

  • 听力 2023托福改革全面解读

    老师:chloe

    时间:3月30日 14:30-15:00

  • 听力 托福口语体验课

    老师:chloe

    时间:3月9日 14:00-15:00

  • 听力 托福写作体验课

    老师:jessica

    时间: 3月2日 17:00-18:00

回复评论

复制评论

解析提交成功,正在审核中

知道了

您已提交评论成功

确定

答案都没有怎么前进?

知道了

此来源单项已做完

知道了

是否确认删除?

取消

删除